铁磁性(铁磁性和顺磁性的区别)
铁磁性
本文内容来自于互联网,分享铁磁性(铁磁性和顺磁性的区别)
某些过渡族(铁族)、稀土族和锕族元素金属、合金及化合物所表现的一种磁性。铁磁性的特征有二:
① 在不太强的磁场中(几到几百奥斯特),就可以磁化到饱和状态(技术饱和状态),磁化强度不再随磁场而增加。
② 在一定温度(称为居里温度Tc)以上时,铁磁性消失而变为正常的顺磁性,即无相互作用的磁性原子集体,磁化强度满足居里定律。
物质的铁磁性起源于原子磁矩之间的强相互作用。这种相互作用(估计为 107奥斯特数量级)远远超过原子磁矩间的偶极-偶极相互作用。因此铁磁性物质又称为强磁性物质。根据许多实验结果,证明铁族金属的原子磁矩不是电子轨道磁矩而是电子的自旋本征磁矩μB(见玻尔磁子)。
外斯理论 P. -E.外斯在1907年首先提出铁磁性的分子场理论和磁畴假说。根据这个理论,在居里温度以下,铁磁物质内部分为若干饱和磁化区域──磁畴,每一磁畴内部各原子磁矩由于强分子场作用,使它们排列到一共同方向,即自发地磁化到饱和强度,但各磁畴的自发磁化强度,方向杂乱,互相抵消,总的不表现宏观磁化强度。在较弱的外磁场作用下,就足以使各磁畴的自发磁化强度部分地趋向一致,从而表现出一定的宏观磁化强度。现代实验完全证明了磁畴是确实存在的,约为0.1~0.01厘米的横向宽度。
外斯分子场理论证明了居里温度的存在。外斯假设,促使原子磁矩排列到共同方向的分子场正比于畴内自发磁化强度M(单位体积),即分子场表示为
(1)
式中NW为外斯分子场常数。再加上外磁场H0,则原子磁矩所受的磁场为
。 (2)
设原子的总角动量量子数为J,按照P.朗之万顺磁性量子理论(见顺磁性),可得物质的磁化强度为
(3)
式中BJ(x)为布里渊函数,N为单位体积内的原子数,g为光谱裂距因子(能级分裂的量度)
(4)
式中k为玻耳兹曼常数,T为绝对温度。在T<Tc(居里温度)时,解出式(3)和(4)联立方程组,即可求出对应于外磁场H0的磁化强度。特别是,在H0=0时,M值即表示自发磁化强度。由于式(3)和式(4)很难直接求解,常采用图解法求得式(3)和式(4)两条图线的交点p,以定出M(T),见图1。
由图1可见,在Tc温度以下,两条图线总有一交点p,即在该温度下的自发磁化强度。在T=Tc时,两图线只在原点相切而无交点,即M(Tc)=0。
。 (5)
在T>Tc时,铁磁性消失,变为顺磁性,满足居里定律
(6)
式中C为居里常数。由此可得其顺磁磁化率
(7)
式(7)是通常的居里-外斯定律。由式(7)可得
。 (8)
居里-外斯定律只在T>CNW时适用。
从图1所得到的结果,可以画出磁化强度的温度函数曲线,其中取J=1/2,如图2所示,图2的曲线与铁、钴、镍等金属的实验结果大致相符合,在常温范围内符合得较好。
海森伯理论 外斯的分子场理论虽然初步解释了铁磁性物质的自发磁化,但对于分子场的起源则未能加以说明。直到W.K.海森伯在1928年才作出了正确的理论阐述。
海森伯铁磁性理论是在原子物理的基础上,应用量子力学方法建立的。按照泡利不相容原理,量子力学证明,相邻原子的电子自旋间存在正的或负的交换作用,以Eij表示交换作用能
(9)
其中S)i和S)j是第i和第j个电子的自旋角动量,Aij是i、j两电子间的交换积分。如果交换积分是正值,则自旋相互平行排列时的能量最低。这就产生铁磁性。如果交换积分是负的,则自旋相互反平行排列时的能量最低,这就产生反铁磁性或亚铁磁性(见铁氧体)。
交换积分随电子间距离的增加而迅速减小,其变化依赖于电子云的空间分布(波函数)。计算交换积分是很因难的。
海森伯除了证明分子场起源于电子自旋间的交换作用外,还对铁磁体的自发磁化强度作了近似的统计计算。在绝缘体中,电子大致是在原子内局域化,因此可以用式(9)表示原子自旋间的相互作用。但在金属中,电子并非全部局域化,自旋间的相互作用要复杂得多。但海森伯解释分子场的基本思想以及泡利的不相容原理是无疑问的。
随着人们对各种磁性物质研究发展,人们对交换作用的认识也有很大发展。